skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fennie, H. William"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Understanding how future ocean conditions will affect populations of marine species is integral to predicting how climate change will impact both ecosystem function and fisheries management. Fish population dynamics are driven by variable survival of the early life stages, which are highly sensitive to environmental conditions. As global warming generates extreme ocean conditions (i.e., marine heatwaves) we can gain insight into how larval fish growth and mortality will change in warmer conditions. The California Current Large Marine Ecosystem experienced anomalous ocean warming from 2014 to 2016, creating novel conditions. We examined the otolith microstructure of juveniles of the economically and ecologically important black rockfish ( Sebastes melanops ) collected from 2013 to 2019 to quantify the implications of changing ocean conditions on early growth and survival. Our results demonstrated that fish growth and development were positively related to temperature, but survival to settlement was not directly related to ocean conditions. Instead, settlement had a dome-shaped relationship with growth, suggesting an optimal growth window. Our results demonstrated that the dramatic change in water temperature caused by such extreme warm water anomalies increased black rockfish growth in the larval stage; however, without sufficient prey or with high predator abundance these extreme conditions contributed to reduced survival. 
    more » « less